Contoh Soal Eksponen Dan Logaritma Kurikulum 2013

Contoh Soal Eksponen Dan Logaritma Kurikulum 2013

contoh soal fungsi eksponen dan logaritma kurikulum 2013

Daftar Isi

1. contoh soal fungsi eksponen dan logaritma kurikulum 2013


Contoh soalnya dan jawabannya adalah: ³log27=
³log27=³log 3³=3 (sifat 3 dan 10)

2. contoh soal eksponen dan logaritma


berapa? 1 aja ya.
eksponen : f(x)=7^x= x=4
logaritma : f(x)= 2log 16=

3. contoh soal cerita tentang eksponen dan logaritma


1. Nilai dari 
 2. Sederhanakanlah

4. minta contoh soal pts ipa kurikulum 2013


apa fungsi rambut akar pada akar??
sebutkan interaksi yang terjadi di ekosistem!

5. contoh soal logaritma dan eksponen beserta cara penyelesaiannya


soal logaritma sederhana
2 log x = 3
X = 2^3
X = 8
soal eksponen sederhana
x^{4} y^{3}/x^{5} y^{2} = x^4 x^-5 y^3 y^3 y^-2 = x^4-5 y^3-2 = x^-1 y^1 = y/x

6. contoh soal cerita pertumbuhan dalam fungsi eksponen dan fungsi logaritma​


Penjelasan dengan langkah-langkah:

Pendahuluan

Lima jenis model matematis yang paling umum berkaitan dengan fungsi-fungsi eksponensial dan logaritma adalah sebagai berikut.

Model pertumbuhan eksponensial:

Model 1

Model penurunan eksponensial:

Model 2

Model Gaussian:

Model 3

Model pertumbuhan logistik:

Model 4

Model logaritma:

Model 5


7. contoh soal uas bahasa indonesia kelas 8 kurikulum 2013


1.Berita
-unsur unsur berita
-kalimat utama
-simpulan berita
-gagasan utama teks berita
-persamaan kedua teks berita
2. Iklan Slogan Poster
-jenis2 iklan
-iklan baris,
- slogan yang tepat
- pernyataan yang sesuai dengan suatu iklan
3. Teks eksposisi
-wacana eksposisi
-kalimat bermajas
-tesis,argumen,dan simpulan
4. Puisi
-diksi,rima,tipografi, majas, dll


KISI

8. buat lah 5 soal tentang persamaan eksponen dan logaritma


tentukan hp dari :
1 2log (x-3)=2
2. 2 log (x-2)+2log(x-3)=1
tentukan nilai x dari:
3 pangkat 2x-1 = 81
4 pangkat 3x-6=64
7(√2)^-2^=-8

9. BAGI YANG TAHU TOLONG DIJAWAB contoh soal logaritma dan eksponen beserta penyelesaiannya


2log10+10log16+2log2=
penyelesaian: 2log10+10log16+2l0g2=2log16+1
                                                     =4+1
                                                     =5

10. contoh soal eksponen dan logaritma kelas X


Mapel : Matematika
Kelas : X SMA
Bab : Eksponen dan Logaritma

Pembahasan :
Terlampir...

11. bagaimana cara mengerjakan soal eksponen dan logaritma


menurut saya, kita harus hafal atau faham dg sifat-sifat baik logaritma naupun eksponen trsbut. Sehingga dapat memudahkan kita dlm mengerjakn soal

12. contoh soal cerita penerapan eksponen dan logaritma dalam kehidupan sehari-hari


pake yang contoh 18 ya

13. Tuliskan contoh contoh soal eksponen, akar,dan logaritma ( beserta jawabannya) . minimal 3



1.[tex] \frac{7}{2+ \sqrt{8} }+ \frac{11}{2-\sqrt{8} } = [/tex]
2.[tex] \frac{4}{ \sqrt{3} + \sqrt{2} }- \frac{3}{\sqrt{2}-1 }+ \frac{5}{\sqrt{3}- \sqrt{2} } [/tex]
3.[tex] \frac{10}{\sqrt{5}+ \sqrt{6} }+ \frac{12}{ \sqrt{6}+ \sqrt{7} }+ \frac{14}{ \sqrt{7}+ \sqrt{8} } [/tex]

14. contoh soal dan jawaban eksponen bentuk akar dan logaritma


Tentukan himpunan penyelesaian pertidaksamaan berikut 3x + 4 ≤ 5 – 4
Jawab:
= 3x – 2x ≤ 5 – 4
= x ≤ 1
HP = { x | x ≤ 1, x ϵR }
Grafik fungsi y = 2log (3x + 2) melalui titik …
Jawab:
= 2log (3x + 2)
= 2log (3 (2) + 2)
= 2log 8
= 2log 23
= 3 . 2log 2
= 3 . 1
= 3
Tentukan penyelesaian persamaan logaritma dari 2log (x – 4) + 2log (x – 3) = 3
Jawab:
2log (x – 4) + 2log (x – 3) = 3
= 2log (x – 4) + 2log (x – 3) = 3 . 2log 2
= 2log (x – 4) (x – 2) = 2log 28
= 2log (x2 – 6x + 8) = 2log 8
= x2 – 6x + 8 – 8 = 0
= x (x – 6) = 0
= x = = 6
Syarat > 0
X = 0 ( x – 4 = 0 – 4
= - 4 (TM)
X = 6 ( x – 4 = 6 – 4
= 2 (M)
X – 2 = 6 – 2
= 4 (TM)
HP = { 6 }


15. contoh soal eksponen atau logaritma dalam kehidupan sehari hari !


 Dengan munculnya penggunaan logaritma, perkalian ataupun perpangkatan yang besar menjadi hal yang sederhana. Dalam kehidupan nyata, logaritma sangat diperlukan bagi ilmu pengetahuan. Dalam sejarah ilmu pengetahuan, pengembangan tabel logaritma dan penggunaannya merupakan prestasi yang luar biasa. Para astronom masih menggunakan skala logaritmik untuk sumbu grafik dan diagram.Penggunaan logaritma yang paling jelas adalah pada penghitungan skala Richter untuk gempa bumi dan desibel. Logaritma juga diaplikasikan dalam penghitungan frekuensi musik.  Penggunaan lain fungsi logaritma adalah dalam bidang biologi, yaitu untuk mengukur laju pertumbuhan penduduk, antropologi, dan keuangan (untuk menghitung bunga majemuk).

16. Contoh soal penerapan eksponen dan logaritma dalam kehidupan sehari-hari


Penjelasan dengan langkah-langkah:

Kumpulan soal pelajaran 3. Logaritma secara dasar merupakan operasi matematika dimana logaritma tersebut merupakan kebalikan dari eksponen perpangkatan yang artinya untuk mencari nilai dari suatu bilangan logaritma harus membalikkan fungsi dari eksponensial.


17. Soal tentang fungsi eksponen & fungsi logaritma


yang nomor 1 
jika DF -2,-1,0,1,2 (sumbu x) (kamu titikin di sumbu x)
maka f(x) nya 1/9,1/3,1,3,2 (sumbu y)(kamu titikin di sumbu y )
grafik yang kamu gambar pasti akan melengkung ke atas tetapi tidak pernah memotong sumbu x
 cara masanginnya = -2 dengan 1/9 sehingga tidak menyentuh (memotong) sumbu x
                               -1 dengan 1/3 juga tidak menyentuh (memotong) sumbu x
kalo yg 1 selanjutnya tuh saya kurang tahu
 yg nomor 2 
9 pangkat 2x bisa disederhanakan menjadi 3 pangkat 4x (9 itu 3 pangkat 2, 2nya dikaliin ke 2x jadi 3 pangkat 4x)
27 pangkat x-2 bisa disederhanakan menjadi 3 pangkat 3x- 6 (27 itu 3 pangkat 3, 3nya dikaliin ke (x-2) ,3 kali x, 3 kali -2, jadinya 3 pangkat 3x-6

trus kalo sudah sama sama 3 (bilangan pokoknya, bukan pangkatnya yah !!)
kamu bisa coret jadinya tinggla 4x= 3x-6
selesain
4x-3x=-6
x=-6   ,  HP= x=-6
untuk yg setrusnya saya juga kurang tahu maaf ya cuman bisa bantu dikit 
semoga bermanfaat

18. contoh soal eksponen atau logaritma dalam kehidupan sehari hari


Contoh Soal Eksponen
Bentuk Sederhana dari (a⁴.b².c³)⁻¹
                                       a⁻³.b⁻².c⁻⁴

Jawabannya :
(a⁴.b².c³)⁻¹
a⁻³.b⁻².c⁻⁴
= a⁻⁴.b⁻².c⁻³
   a⁻³.b⁻².c⁻⁴
= a⁻⁴⁻⁽⁻³⁾. b⁻²⁻⁽²⁾. c⁻³⁻⁽⁻⁴⁾
= a⁻¹.c
= c
   a

Contoh Soal Logaritma
Tentukan nilai dari : ⁴log81.³log32

Jawabannya
⁴log81.³log 32
= ₂² log 3⁴. ³ log 2⁵
= 4/2 ² log 3. 5.³log 2
= 2.5 ²log3.³log 2
= 10 ²log 2
= 10.1
= 10

Semoga Membantu ...

19. contoh soal eksponen dan logaritma yang berkaitan dengan kehidupan sehari hari



Pertumbuhan bakteri ⇒ sifat eksponen

Perkembangan ukuran memori data ⇒ sifat eksponen

Pertambahan jumlah penduduk dalam 1 abad ⇒ sifat eksponen

Pertumbuhan ekonomi yang awalnya meningkat lalu melambat ⇒ sifat logaritma

20. Contoh soal logaritma, eksponen, fungsi pertumbuhan dlm kehidupan sehari2


Contoh soal logaritma:

Tentukan pH larutan jika kosentrasi ion H+ sebesar [tex]1*10^-3[/tex]

Jawab.

[tex][H^+]=1*10^-3[/tex]  ------> pH = [tex]-log(1*10^-3)[/tex] 
                                                        = (-3)*-log10
                                                        = 3
 
 belum nemu contoh untuk exponen dan pertumbuhan.
 mudah2an dari penjawab yang lain yaa. 


21. materi eksponen dan logaritma kurikulum 2013 kls X. Soal: 1. (x+y+z)+2=... 2. (x+y)kuadrat + (x-y)kuadrat=... Mohon bantuannya..


Nomor 1.
Jabarkan:
(x+y+z)²
= ((x+y)+z)²
= (x+y)² + 2(x+y)z + z²
= x² + 2xy + y² + 2xz + 2yz + z²
= x² + y² + z² + 2xy + 2xz + 2yz

Nomor 2.
(x+y)² + (x-y)²
= (x² + 2xy + y²) + (x² - 2xy + y²)
= 2x² + 2y²

22. contoh soal ipa kelas 7 kurikulum 2013


ipa apa?kimia?biologi?fisika?

23. Contoh soal soal pkn kelas 7 kurikulum 2013 revisi 2014


1. Pada tanggal brp BPUPKI didirikan dan dibubarkan??

24. berikan contoh soal fungsi eksponen dan fungsi logaritma dong


Suatu fungsi dirumuskan f(x) = 9 - 3x. Jika f(p) = 15, nilai p adalah... ?


25. Ada yang tahu contoh soal eksponen/logaritma mengenai masalah pengurangan intensitas cahaya?


Misalkan intensitas suatu cahaya untuk setiap meternya di bawah permukaan air laut berkurang 3,5%. Jadi persentase cahaya di permukaan yang menembus ke dalam laut dapat kita tulis sebagai fungsi dari kedalaman k dengan satuan meter dalam bentuk persamaan:
p = 100(1 -0,035)katau p = 100(0,965)


26. contoh soal uts bahasa inggris kelas 8 kurikulum 2013


2. Jaka : Pass the salt for me, please !
Budi : …………(acceptance)
a. thank you
b. here you are
c. take by your self
d. sorry, I can’t

27. contoh soal ski semester 1 kelas 7 kurikulum 2013​


CONTOH

1) DA'I PERTAMA SEJARAH ISLAM ADALAH...


28. 5 contoh soal eksponen dan logaritma kelas 10?


1) sederhanakan hasil operasi bilangan berpangkat berikut
a) 2 pangkat 5 x 2 pangkat 9 x 2 pangkat 12
2) tentukan nilai x yang memenuhi persamaan berikut
a) 2 pangkat x = 8
3) bagaimana cara termudahkan untuk mencari
a) 3 pangkat 2008 (10 pangkat 2013 + 5 pangkat 2012 x 2 pangkat 2011 per/dibagi
5 pangkat 2012(6 pangkat 2010 + 3 pangkat 2009 x 2 pangkat 2008)
4) tuliskan dlm bntuk logaritma dari : 5 pangkat 3 = 125
5) hitunglah nilai setiap log 10 pangkat 4

29. Contoh soal Matematika SD Kelas 4 Kurikulum 2013 ! butuh 10 soal !


1.] berapa KPK dari 6 , 15 ,20
2.] faktor dari 12 adalah
3.]faktorisasi prima dari 24
4.]bilangan kelipatan 4 adalah
5.] hasil dari 250-25-35 adalah
6.] 8+12-12=
7.] tentukan FPB dari 20 dan 30
8.] langkah langkah mencari FPB adalah
9.]  kelipataan dari 20 ,30 ,dan 50 adalah
10.] tentukan langkah mencari KPK adalah

30. SOAL EKSPONEN DAN LOGARITMA...​


[tex]\sf 3^{2x+1}-4^y=4[/tex]

[tex]\sf 3^{2x}.3^1-4^y=4[/tex]

[tex]\sf 3.3^{2x}-4^y=4[/tex][tex]~...~(~i~)[/tex]

[tex]\sf 9^x+4^y=8[/tex]

[tex]\sf 3^{2x}+4^y=8[/tex][tex]~...~(~ii~)[/tex]

Eliminasi variabel [tex]4^y[/tex]pada[tex]~(~i~)~[/tex]dan[tex]~(~ii~)~:[/tex]

[tex](~i~)[/tex][tex]\sf (\times 1)~:~3.3^{2x}-4^y=4[/tex]

[tex](~ii~)[/tex][tex]\sf (\times 1)~:~3^{2x}+4^y=8[/tex]

---------------------------------- [tex]~~+[/tex]

[tex]\sf 4.3^{2x}=12[/tex]

[tex]\sf 3^{2x}=3[/tex]

[tex]\sf 3^{2x}=3^1[/tex]

[tex]\to~\sf 2x=1\to~\red{\sf x=\frac{1}{2}}[/tex]

Substitusikan nilai [tex]\sf x=\frac{1}{2}~[/tex]ke[tex]~(~ii~)~:[/tex]

[tex]\sf 3^{2x}+4^y=8[/tex]

[tex]\sf 3^{2.(\frac{1}{2})}+4^y=8[/tex]

[tex]\sf 3^1+4^y=8[/tex]

[tex]\sf 4^y=8-3[/tex]

[tex]\sf 4^y=5[/tex]

[tex]\sf y=~^4log~5[/tex]

[tex]\sf y=~^{2^2}log~5[/tex]

[tex]\red{\sf y=\frac{1}{2}~^2log~5}[/tex]

Sehingga :

[tex]\sf \frac{x}{y}=\frac{\frac{1}{2}}{\frac{1}{2}~^2log~5}[/tex]

[tex]\sf \frac{x}{y}=\frac{1}{^2log~5}[/tex]

[tex]\pink{\huge{\sf \frac{x}{y}=~^5log~2}}[/tex]


31. Berikan contoh soal bahasa indonesia kurikulum 2013


Carilah gagasan utama pada teks diatas!

32. soal eksponen dan logaritma


Logaritma dan pembahasannya

1) Jika log 3 = 0,4771
    Dan log 5 = 0,6990     
    Tentukan :
a)
= log 45
= log (3 x 3 x 5)
= log 3 + log 3 + log 5
= 0,4771 + 0,4771 + 0,6990
= 1,6532

b)
= log 25
= log (5 x 5)
= log 5 + log 5
= 0,6990 + 0,6990
= 1,3980

c)
= log 0,36
= log (9 : 25) 
= log 9 - log 25
= log 3²  -  log 5²
= 2 x log 3  - 2 x log 5
= 2 x (log 3 - log 5)
= 2 x (0,4771 - 0,6990)
= 2 x ( - 0,2219 )
= - 0,4438

d)
= log 135
= log (27 x 5)
= log 27 + log 5
= log 3³ + log 5
= 3 x log 3 + log 5
= 3 x 0,4771 + 0,6990
= 2,1303
 
e)
= log 5/3
= log 5 - log 3
= 0,6990 - 0,4771
= 0,2219

f)
= log √135
= 1/2 x log 135
= 1/2 x log (27 x 5)
= 1/2 x [ log 27 + log 5 ]
= 1/2 x [ log 3³ + log 5 ]
= 1/2 x [ 3 x log 3 + log 5 ]
= 1/2 x [ 3 x 0,4771 + 0,6990 ]
= 1/2 x [ 2,1303]
= 1,06515

 


Soal eksponen
[tex]\displaystyle \frac{3^{2008}~\times~(10^{2013}+5^{2012}2^{2011})}{5^{2012}\times(6^{2010}+3^{2009}2^{2008})}~~=~~\frac{3^{2008}~\times~(10^{2013}+10^{2011}\times5)}{5^{2012}\times(6^{2010}+6^{2008}\times3)} \\ \\ \\ ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~=~\frac{3^{2008}~\times~10^{2011}(10^2+5)}{5^{2012}~\times~6^{2008}(6^2+3)} \\ \\\\~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~=~\frac{3^{2008}~\times~(5\times2)^{2011}(100+5)}{5^{2012}~\times~(2\times3)^{2008}(36+3)} [/tex]
[tex]\displaystyle \frac{3^{2008}~\times~(5\times2)^{2011}(100+5)}{5^{2012}~\times~(2\times3)^{2008}(36+3)}~~=~~\frac{\not3^{2008}\times\not5^{2011}\not2^{2011}~\times105}{\not5^{2012}\times\not2^{2008}\not3^{2008}\times39} \\ \\ \\ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~=~\frac{2^3~\times~105}{5~\times~39}~=~\frac{56}{13} [/tex]

33. Contoh soal latihan statistika matematika kelas 4 kurikulum 2013​


Jawab:

Penjelasan dengan langkah-langkah:


34. contoh soal cerita matematika kelas 3 kurikulum 2013


Pak Sony memetik 972 buah Leci. leci tersebut dibeli oleh Pak Mahmud sebanyak 725 buah. Berapa buah leci yang masih ada? Jawabannya 972-725=247

35. Tulislah sifat-sifat eksponen dan logaritma dengan contoh soal dan penyelesaiannya ​


Penjelasan dengan langkah-langkah:

Kelas : X (1 SMA)

Materi : Bentuk Eksponen atau Pangkat

Kata Kunci : eksponen, pangkat, sifat-sifat, contoh

Pembahasan :

Jika a suatu bilangan real dan n suatu bilangan bulat positif, maka

aⁿ = a x a x ... x a

____v_____

n faktor

dengan

n dinamakan eksponen atau pangkat.

a dinamakan bilangan pokok (atau basis atau bilangan dasar).

aⁿ dinamakan bilangan berpangkat.

a x a x ... x a (sampai dengan n suku) dinamakan hasil perpangkatan.

Sifat-sifat bentuk eksponen, antara lain :

1. pᵃ x pᵇ = pᵃ ⁺ ᵇ,

2. pᵃ : pᵇ = pᵃ ⁻ ᵇ,

3. (pᵃ)ᵇ = pᵃ ˣ ᵇ,

4. (p x q)ᵇ = pᵇ x qᵇ,

5. (p : q)ᵇ = pᵇ : qᵇ,

6. p⁰ = 1,

7. p^{-a}=\frac{1}{p^a}p

−a

=

p

a

1

,

8. \sqrt{p}=p^{ \frac{1}{2} }

p

=p

2

1

dan \sqrt[n]{p^m}=p^{ \frac{m}{n} }

n

p

m

=p

n

m

Contoh :

1. 2³ x 2⁻⁴ = 2³ ⁺ ⁽⁻⁴⁾ = 2⁻¹.

2. 5⁶ : 5⁻⁹ = 5⁶ ⁻ ⁽⁻⁹⁾ = 5⁶ ⁺ ⁹ = 5¹⁵.

3. (9²)⁴ = 9² ˣ ⁴ = 9⁸.

4. 6⁷ = (2 x 3)⁷ = 2⁷ x 3⁷.

5. 3⁸ = (12⁸ : 4⁸).

6. 7⁰ = 1.

7. 2⁻¹ = \frac{1}{2^1}= \frac{1}{2}

2

1

1

=

2

1

.

8. \sqrt[8]{3^4}=3^{ \frac{4}{8} }=3^{ \frac{1}{2} }= \sqrt{3}

8

3

4

=3

8

4

=3

2

1

=

3

.

Semangat!


36. contoh soal soal IPS kelas 8 kurikulum 2013​


Jawaban:

1. apa yang dimaksud dengan ekonomi maritim dan ekonomi kelautan?

2. tuliskan anggota negara negara asean beserta ibu kotanya?

3. tuliskan karakteristik negara asean?


37. contoh soal cerita bab eksponen dan logaritma kelas 10 SMA


tentukan besarnya uang yg ditabungkan di bank dengan bunga majemuk 30% pertahun agar dalam kurun waktu 8 tahun uang itu menjadi Rp1.000.000 dengan bantuan logaritma!

38. contoh soal eksponen,logaritma dan persamaan linear dalam kehidupan sehari hari


M logaritma A tambah M log b kurangM log A kali B
upsssss . klw salah gak papa y

39. Contoh Soal uts bahasa indonesia kelas 8 kurikulum 2013


Baca aja materi :

1.Cara Mencari topik pada Fabel
2.Mencari bagian unsur instrinsik
3.kalimat aktif dan pasif
4.penggunaan huruf kapital
5.kata kerja aktif transitif dan intransitif
6.puisi
7.kata depan
8.Bagian - bagian pada orientasi  , peristiwa dan masalah , reorientasi
9. antonim dan sinonim
10.kata baku dan tidak baku
11. Kata Perintah

Maaf gak bisa ngasih Contoh soal :( , cuman bisa ngasih materi

40. contoh soal uts ips kelas7 kurikulum 2013


indonesia di lihat dari aspek astronomis terletak di antar
A.sirkum pasifik dan sikrum mediteran
B.6celcius - 11 celcius dan 95 celcius
c.benua asia dan benua australia
d. samudra pasifik dan samudra hindia

Video Terkait

Kategori matematika